Finite-Time Analysis of Kernelised Contextual Bandits
نویسندگان
چکیده
We tackle the problem of online reward maximisation over a large finite set of actions described by their contexts. We focus on the case when the number of actions is too big to sample all of them even once. However we assume that we have access to the similarities between actions’ contexts and that the expected reward is an arbitrary linear function of the contexts’ images in the related reproducing kernel Hilbert space (RKHS). We propose KernelUCB, a kernelised UCB algorithm, and give a cumulative regret bound through a frequentist analysis. For contextual bandits, the related algorithm GP-UCB turns out to be a special case of our algorithm, and our finite-time analysis improves the regret bound of GP-UCB for the agnostic case, both in the terms of the kerneldependent quantity and the RKHS norm of the reward function. Moreover, for the linear kernel, our regret bound matches the lower bound for contextual linear bandits.
منابع مشابه
Provably Optimal Algorithms for Generalized Linear Contextual Bandits
Contextual bandits are widely used in Internet services from news recommendation to advertising, and to Web search. Generalized linear models (logistical regression in particular) have demonstrated stronger performance than linear models in many applications where rewards are binary. However, most theoretical analyses on contextual bandits so far are on linear bandits. In this work, we propose ...
متن کاملPAC-Bayesian Analysis of Contextual Bandits
We derive an instantaneous (per-round) data-dependent regret bound for stochastic multiarmed bandits with side information (also known as contextual bandits). The scaling of our regret bound with the number of states (contexts) N goes as
متن کاملA Survey on Contextual Multi-armed Bandits
4 Stochastic Contextual Bandits 6 4.1 Stochastic Contextual Bandits with Linear Realizability Assumption . . . . 6 4.1.1 LinUCB/SupLinUCB . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4.1.2 LinREL/SupLinREL . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.1.3 CofineUCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.1.4 Thompson Sampling with Linear Payoffs...
متن کاملStochastic Contextual Bandits with Known Reward Functions
Many sequential decision-making problems in communication networks such as power allocation in energy harvesting communications, mobile computational offloading, and dynamic channel selection can be modeled as contextual bandit problems which are natural extensions of the well-known multi-armed bandit problem. In these problems, each resource allocation or selection decision can make use of ava...
متن کاملResourceful Contextual Bandits
We study contextual bandits with ancillary constraints on resources, which are common in realworld applications such as choosing ads or dynamic pricing of items. We design the first algorithm for solving these problems that improves over a trivial reduction to the non-contextual case. We consider very general settings for both contextual bandits (arbitrary policy sets, Dudik et al. (2011)) and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1309.6869 شماره
صفحات -
تاریخ انتشار 2013